QUICK GUIDE

UNDERSTANDING CADEXOMER IODINE

What is cadexomer iodine?
The cadexomer bead is a spherical starch structure with highly absorptive properties.

Using a unique manufacturing process, 0.9% elemental iodine is loaded into the bead. Its hydrophilic property allows absorption of up to 7 times its weight in exudate.

Features of IODOSORB

- Broad-spectrum antimicrobial including meticillin resistant Staphylococcus aureus (in vitro)
- Minimal cytotoxicity to cells in vivo
- Proven efficacy against biofilm (in vivo and in vitro)
- Extensive evidence to support its use, including a positive Cochrane Review stating cadexomer iodine generates higher healing rates than standard care in venous leg ulcers.

References

4. Wolcott RD et al. J Wound Care 2009; 18, 54-6
7. Johnson A. Prof Nurse 1991; 7: 60, 62, 64
13. Driftfield K et al. Poster presented at SAWC, Tampa, FL, USA, 2007
14. Salmen H Leasky A. Data on File 2001; GR Micro Ltd
18. Dalea B. et al. presented at AAWC, Atlanta, GA, USA, 2016

OVERCOMING BIOFILM AND INFECTION

IODOSORB exhibits dual action against infection and biofilm in chronic wounds

IODOSORB is a dual-action wound management product that offers the benefits of a broad-spectrum, sustained-release antimicrobial agent in combination with desloughing and fluid-handling properties, making it effective against biofilm in vitro.

High absorptive property

IODOSORB’s cadexomer micro-beads promote autolytic debridement and desloughing actions, and can dehydrate and directly disrupt the biofilm structure.

Sustained antimicrobial iodine release

Iodine is released from the micro-beads in effective, sustained low concentrations, rather than high and short-burst doses (as with older formulations such as povidone iodine) that may be toxic.

Clinically, this activity provides a reduction in wound bioburden and infection.

Against biofilm, once the cadexomer micro-beads have physically disrupted the biofilm matrix, the iodine can then kill the exposed bacteria within the biofilm community.

IODOSORB’s dual action against infection and biofilm.

Wounds that fail to heal despite optimal patient and wound care should be suspected of having a biofilm present. Using IODOSORB within a biofilm-based approach, which follows the T.I.M.E continuum, may improve patient outcomes and wellbeing.

IODOSORB reduces microbial load, biofilm, MMPs, oedema, odour and pain.

Supported by: Smith & Nephew www.smith-nephew.com

© Wounds International 2018

* Trademark of Smith & Nephew. All trademarks acknowledged © April 2018 Smith & Nephew

The information contained in this asset is intended for healthcare professionals outside of the US only.
USING IODOSORB® IN A BIOFILM-BASED WOUND CARE APPROACH

IODOSORB® in the T.I.M.E wound bed preparation continuum
A biofilm-based wound care approach, within the T.I.M.E continuum¹, promotes a multifaceted attack on biofilm² and has been shown to improve the healing trajectory in a large cohort study³.

IODOSORB® is indicated for use in chronic and infected wounds where bioburden is a barrier to healing

Contraindicated in dry wounds.

PRACTICAL TIPS

IODOSORB® is a sterile antimicrobial dressing and available in three formats:

Gel or ointment
Dressing or paste (IODOFLEX® or IODOSORB dressing)
Powder

Wound assessment and biofilm identification
1. Assessment of indirect clinical signs and symptoms of biofilm (e.g. low level inflammation, slow-healing wound, slough, and moderate or no improvement with multiple rounds of oral antibiotics and recurrent infection)
2. Biopsy and biofilm lab testing – however these might not be reliable given the non-homogeneous distribution of biofilm on the surface and within the deeper layers of the wound.

Aggressive debridement
Sharp debridement is a crucial and necessary step in the wound bed preparation continuum but it is often not enough to remove all biofilm. Moreover, biofilm is known to reform rapidly following debridement²,⁴.

Initiate biofilm therapies
The selection of a proven and effective anti-biofilm treatment, such as IODOSORB, is recommended to remove residual biofilm following debridement and also ideal to address biofilm where sharp debridement is not possible⁵,⁶.

Maintenance debridement and treatment optimisation
Maintenance debridement is an important complementary step⁴. Some dressings (such as IODOSORB) can also promote autolytic debridement throughout application and promote effective wound bed preparation⁷-¹².

Step-up to advanced therapies to kick-start healing
Once biofilm has been disrupted and removed, the clinician may choose to move to standard care using a non-antimicrobial dressing or step-up to advanced therapies such as negative wound pressure therapy (e.g. PICO®) - this can be used in conjunction with dressings that are able to prevent biofilm reformation (e.g. silver-based dressing, such as ACTICOAT®)⁹.

Dressing change
- Frequency of dressing change will depend on the amount of exudate in the wound bed
- IODOSORB® will transition from brown to yellow/grey when the iodine has been depleted, indicating that it is time to change the dressing
- IODOSORB® should be changed when it has become saturated with wound fluid, and all the iodine has been released
- Dressings should be changed 2-3 times a week, or more frequently, even daily, if the wound is heavily exuding
- Dressings can be left up to 72 hours, depending on exudate levels
- Dosage should not exceed a quantity of 150g per week (on the same patient)
- Can be used for up to 3 months in a single course of treatment
- If necessary, soak the dressing for a few minutes before removal
- Gently remove IODOSORB® using a stream of water or saline
- Gently blot any excess fluid, leaving the wound surface slightly moist, before reapplying IODOSORB®.

For detailed information, including indications for use, contraindications, precautions and warnings, please consult the product's Instructions for Use (IFU) prior to use.