AQUACEL® Ag DRESSINGS

Introduction
AQUACEL® Ag dressings (Box 1) incorporate Hydrofiber® Technology with 1.2% (w/w) silver (ie 12mg of silver per gram of dressing). The combination of Hydrofiber® Technology with ionic silver (Ag⁺) produces a dressing that is highly absorbent, has favourable gelling characteristics (Box 2) and broad-spectrum antimicrobial activity (as demonstrated by in vitro testing)¹⁻³. These qualities mean that AQUACEL® Ag dressings can assist in overcoming major challenges to wound healing.

Authors: Queen D, Walker M, Parsons D, Rondas A. Full author details are on page 6.

What are AQUACEL® Ag dressings?
AQUACEL® Ag is a versatile primary dressing indicated for moderate to highly exuding chronic and acute wounds where there is infection or an increased risk of infection. AQUACEL® Ag Ribbon Dressing with Strengthening Fiber is suitable for cavity wounds and AQUACEL® Ag SURGICAL cover dressing is used on surgical incisions (Box 1).

How are AQUACEL® Ag dressings made?
AQUACEL® Ag dressings are made using patented Hydrofiber® Technology processes (Box 2). The even distribution of ionic silver permits antimicrobial activity; while the silver deeper within the dressing acts as a reservoir to provide sustained silver availability⁴⁻⁵. AQUACEL® Ag Ribbon Dressing with Strengthening Fiber is made from strips of silver impregnated Hydrofiber® Technology that have been stitch-bonded with a non-gelling yarn. The yarn reinforces the ribbon dressing to provide tensile strength even when the dressing is wet.

AQUACEL® Ag SURGICAL cover dressing is made by layering an island of silver-impregnated Hydrofiber® Technology with a hydrocolloid adhesive layer and a breathable polyurethane film backing. The Hydrofiber® island is stitch-bonded with nylon and elastane yarns to provide more flexibility if the dressing is placed over joints. The hydrocolloid layer allows adhesion to the skin and the polyurethane film acts as a waterproof bacterial barrier.

Managing exudate
A key feature of dressings made with Hydrofiber® Technology is their ability to lock in any fluid that is absorbed (Box 2). This means that wound exudate, and the pathogenic bacteria and harmful enzymes that it may contain⁶⁻¹⁰, are removed from the wound bed. As a result, the wound surface and surrounding skin are protected from potentially harmful effects⁵,¹⁰. In addition, when the dressing is removed from the wound, the trapped bacteria and enzymes are also removed, meaning that any release of bacteria from the dressing into the air is minimised.

In acute healing wounds and in chronic wounds, dressings made with Hydrofiber® Technology maintain a moist wound environment whilst absorbing excess exudate¹¹⁻¹². In partial thickness wounds (eg burns), animal studies have shown that neutrophils are taken up into dressings containing Hydrofiber® Technology and a layer of fibrin forms between the dressing and the wound¹³. The fibrin aids adhesion of the dressing to the wound, enhancing conformability and reducing dead space. In addition, the uptake of neutrophils into the dressing in combination with the fibrin layer may prevent interaction of these immune cells with macrophages and so reduce the inflammatory response¹⁴.

Antimicrobial properties
AQUACEL® Ag dressings contain ionic silver and provide sustained and effective antimicrobial activity against a wide range of aerobic, anaerobic (including antibiotic resistant strains such as methicillin-resistant Staphylococcus aureus [MRSA] and vancomycin-resistant enterococci [VRE]), yeast and filamentous fungi for up to 14 days, as demonstrated by in vitro testing¹¹,¹³. AQUACEL® Ag dressings may be left in place for up to seven days in chronic wounds¹⁴ or for up to 14 days on partial thickness burns¹⁵. The ionic silver in AQUACEL® Ag dressing starts killing a broad spectrum of pathogens, including MRSA, within 30 minutes of exposure to the dressing¹⁶. In addition, bacteria absorbed into the dressing are also destroyed¹⁶⁻¹⁷. AQUACEL® Ag dressings also control bioburden by micro-contouring to the wound bed (Box 2) to prevent dead spaces where bacteria may flourish and to ensure delivery of the antimicrobial ionic silver directly where needed (as demonstrated by in vitro testing).

<table>
<thead>
<tr>
<th>Box 1 AQUACEL® Ag Dressings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing name</td>
</tr>
<tr>
<td>AQUACEL® Ag Dressing</td>
</tr>
<tr>
<td>AQUACEL® Ag Ribbon Dressing with Strengthening Fiber</td>
</tr>
<tr>
<td>AQUACEL® Ag SURGICAL cover dressing</td>
</tr>
</tbody>
</table>
Why is ionic silver important?

High silver content or the total amount of silver made available by a dressing does not relate directly to greater antimicrobial activity. This is because silver exists in several chemical forms. Silver metal (Ag) can only become effective as an antimicrobial agent when it transforms into silver ions (Ag+). Silver ions damage bacterial cell walls and interfere with DNA synthesis. Silver ions also denature proteins and enzymes, and inhibit protein synthesis, killing the bacterium. This multi-targeted mechanism of action means that ionic silver has a far lower propensity to induce bacterial resistance than classic antibiotics.

AQUACEL® Ag dressings contain silver only in the ionic form (Ag+). The dressings act as a reservoir of silver ions by continually supplying a concentration that has effective antimicrobial action, while avoiding higher concentrations that may cause transient skin staining as seen in vitro testing.

AQUACEL® Ag dressings make ionic silver available in a controlled manner in response to exudate levels, ie ‘on demand’. The amount of ionic silver available is limited by the maximum amount of silver ions that can get into solution, ie if exudate levels increase or ionic silver is consumed by antimicrobial action, the concentration of silver ions in the exudate drops and the dressing will release more to re-establish the maximum solution concentration.

Because the silver ions are readily available and easily dissociated from the strands of Hydrofiber® Technology, the dressings do not need to contain large amounts of silver to be able to produce sufficient concentrations of silver ions ‘on demand’ for antimicrobial action.

What is the evidence?

Laboratory studies of AQUACEL® Ag dressing have demonstrated:
- broad spectrum antimicrobial activity
- sustained antimicrobial activity (up to 14 days)

Additional clinical studies of AQUACEL® Ag dressings have demonstrated:
- high absorption and fluid retention
- reduced pain during wear and at dressing removal
- easy application and removal.

Clinical evaluation of AQUACEL® Ag dressings has been undertaken in a wide range of wound types, including chronic leg ulcers, diabetic foot ulcers, partial-thickness burns, surgical wounds, and wound cavities.
In a study of lower limb arthroplasty wounds, AQUACEL® SURGICAL cover dressing was found to be associated with a lower blister rate, fewer surgical site infections and a lower incidence of delayed discharge. In addition to the clinical benefits of aiding healing, reducing pain and preventing wound trauma in a wide range of wound types, clinical studies have found that the AQUACEL® dressings have a longer wear time and, therefore fewer dressing changes are required compared to other dressings tested in these studies. This has numerous benefits, including a reduction in overall costs (eg staff time, materials costs) as well as a reduction in patient inconvenience.

When are the dressings appropriate?
AQUACEL® Ag Dressing may be used for the management of:
- infected wounds or those at risk of infection
- partial thickness (second-degree) burns
- diabetic foot ulcers, leg ulcers and pressure ulcers
- surgical wounds
- traumatic wounds
- wounds that are prone to bleeding
- oncology wounds
- donor and recipient graft sites.
(NB: If the wound is clinically infected, the patient may require systemic antibiotics in conjunction with AQUACEL® Ag Dressing.)

AQUACEL® Ag Ribbon Dressing with Strengthening Fiber may be used for the management of:
- tunnelling wounds
- diabetic foot ulcers
- sinus wounds
- fistulas
- abscesses (after incision and drainage)

- pilonidal cysts (after incision and drainage)
- other chronic or acute wounds.

AQUACEL® Ag SURGICAL cover dressing may be used:
- for wounds healing by primary intention (eg traumatic and elective postoperative wounds/incisions)
- to provide an effective barrier to bacterial penetration to help reduce infection.

Contraindications
AQUACEL® Ag Dressing, AQUACEL® Ag Ribbon Dressing with Strengthening Fiber and AQUACEL® Ag SURGICAL cover dressing should not be used on individuals who are sensitive to or who have had an allergic reaction to silver or sodium carboxymethylcellulose.

Guide to application
AQUACEL® Ag Dressing and AQUACEL® Ag Ribbon Dressing with Strengthening Fiber
Please refer to the package inserts for complete directions for use.

Prepare the wound bed
Before any application of AQUACEL® Ag Dressing or AQUACEL® Ag Ribbon Dressing with Strengthening Fiber the wound bed should be prepared according to local policy. This will usually involve removal of necrotic or sloughy tissue. The wound should be cleansed and the skin around the wound thoroughly dried.

For wounds that are not deep
The AQUACEL® Ag Dressing chosen should be of sufficient size to overlap by 1 cm (approximately 0.5 inches) onto the intact skin surrounding the wound. The dressing will shrink as it absorbs wound fluid and gels. The vertical absorption of exudate means that periwound maceration is less likely and that there may be no need to use methods to protect the wound edge. When there is any depth to
the wound the dressing should be layered to fill the wound and avoid the creation of dead space.

If the wound bed is relatively dry, it is recommended that AQUACEL® Ag Dressing is placed in the wound and then moistened with sterile saline over the wound area only. The vertical absorption of the dressing will help to maintain the moist area over the wound only and reduce the risk of periwound maceration.

For partial thickness burns, AQUACEL® Ag Dressing should overlap 5cm (approximately 2 inches) onto the skin surrounding the burn. The dressing should be covered with sterile gauze and secured with medical tape or a retention bandage. In this situation, adherence of the dressing will help to maintain the wound moist. The choice of secondary dressing will depend on the level of exudation (eg for a lightly exuding wound DuoDERM® Dressing (ConvaTec) or for a lightly to moderately exuding wound Versiva® XC® Gelling Foam Dressing (ConvaTec) may be appropriate). See individual package inserts for instructions regarding cover dressing usage and removal. If covering with gauze, the dressings should be changed when wound fluid strikes through the outer layer.

**Removal**

While the dressing may have to be changed every two to three days initially, it can be left on the wound for up to seven days when the wound is almost closed. The dressing should be changed when it is saturated with wound fluid or if the cover dressing’s edges are bunching, rolling or leaking. The dressing should be removed when medically indicated (eg when wound fluid comes out of the dressing, there is too much bleeding, or there is increased pain). If residual dressing is left in the wound, irrigate with a

---

**AQUACEL® Ag case study**

This case study features a female patient with recurrent venous leg ulcers

This female patient, aged 77 years, has chronic venous insufficiency following a deep venous thrombosis years previously. Since 1990, she has had recurrent venous leg ulcers on the lower parts of both legs. The current ulcers, two on the left leg and one on the right, started in 2007.

The patient has severe arthritis of the left knee that limits her ability to walk less than 200 metres per day. She is on the waiting list for a knee replacement, but this cannot take place until the venous leg ulcers have healed. As a result, she was referred to the wound clinic in early 2010.

At the initial visit, the patient said that the wounds had increased in area, but was unclear by how much and over what period. She mentioned that she was currently experiencing more wound-related pain than usual. The ulcers were being treated with a paraffin-impregnated cotton viscose primary dressing and an absorbent cellulose fluff secondary dressing beneath Class I compression stockings.

The wound beds were green/yellow and producing considerable watery exudate. These signs, along with the increase in pain and wound area, indicated infection.

AQUACEL® Ag Dressing was chosen because of its antiseptic properties, high absorption and ease of use. At each dressing change, the ulcers underwent sharp debridement and cleansing with tap water-soaked gauze. The AQUACEL® Ag Dressing was covered with an absorbent cellulose fluff dressing that was held in place by an elasticated tubular bandage. The patient’s stockings did not provide sufficient compression, and so ambulatory compression bandaging with short-stretch bandages was commenced.

The wound on the right lower leg is used here as an example (see pictures). On presentation, the wound area was 64cm². After five months of treatment, the condition of the wound bed had improved, there was visible granulation tissue and the area of the wound was 50cm². By the end of December 2010, the wound area had reduced to 6.5 cm². At the end of January 2011, the level of exudate production was so low that AQUACEL® Ag Dressing was discontinued.

Treatment was continued with an enzyme algogel. By the beginning of February 2011, the wound area had reduced further to 1.5 cm². The other two ulcers had healed and, because the oedema of the legs has resolved, the patient is now wearing therapeutic elastic stockings.

In this case, AQUACEL® Ag Dressing antimicrobial and moisture retentive properties helped to promote healing in the patient’s long-standing venous leg ulcers that were exhibiting signs of infection.
wound cleanser. If the dressing dries and is hard to remove, it should be moistened according to local policy (eg with sterile saline or sterile water) and allowed to soak until it lifts easily.

**AQUACEL® Ag SURGICAL cover dressing**

Please refer to the package insert for complete directions for use

**Before application**

The area around the wound should be cleansed according to local policy and dried thoroughly.

**Application**

The dressing size chosen should ensure direct contact between the Hydrofiber® Technology pad and all of the incision. Contact between the incision and the hydrocolloid adhesive should be avoided. The AQUACEL® Ag SURGICAL cover dressing does not require a secondary dressing.

The dressing is flexible and extensible to aid comfort and ease of movement. Once applied, the dressing can be moulded into place. When applying the dressing to knees, it is recommended that the knee is bent at a 30 degree angle during application.

**Removal**

The dressing should be removed when clinically indicated, eg if there is excessive bleeding, leakage, suspicion of infection, or seven days after application. The dressing should be removed by pressing down on the skin with one hand and carefully lifting the edge with the other hand. The adhesive seal can be broken by stretching the dressing.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Design</th>
<th>Criteria</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanscheidt W, Lazareth L, Routkovsky-Norval C. WOUNDS 2003; 15(1): 371–78</td>
<td>Safety evaluation of a new ionic silver dressing in the management of chronic ulcer</td>
<td>Open label, multicentre, non-comparative study</td>
<td>Chronic leg ulcers (n=15)</td>
<td>39% patients were assessed as having marked improvement and 56% mild improvement</td>
</tr>
<tr>
<td>Jude EB, Apelqvist J, Spraul M, et al. Diabet Med 2007; 24: 280–88</td>
<td>Prospective randomized controlled study of Hydrofiber® dressing containing ionic silver or calcium alginate dressings in non-ischaemic diabetic foot ulcers</td>
<td>Phase III, open label, randomised, multicentre comparative</td>
<td>Non-ischaemic diabetic foot ulcers (n=134)</td>
<td>Mean healing time was 53 days for AQUACEL® Ag Dressing and 58 days for calcium alginate</td>
</tr>
<tr>
<td>Caruso DM, Foster KN, Blome-Eberwein SA, et al. J Burn Care Res 2006; 27(3): 298–309</td>
<td>Randomized clinical study of Hydrofiber® dressing with silver or silver sulfadiazine in the management of partial-thickness burns</td>
<td>Randomised, controlled</td>
<td>Partial thickness burns (n=84)</td>
<td>AQUACEL® Ag Dressing was associated with: less pain and anxiety at dressing change, over 50% fewer dressing changes, fewer procedural medications</td>
</tr>
<tr>
<td>Paddock HN, Fabia R, Giles S, et al. J Pediatr Surg 2007; 42(1): 211–13</td>
<td>A silver-impregnated antimicrobial dressing reduces hospital costs for paediatric burns patients</td>
<td>Retrospective review of cost-effectiveness</td>
<td>Paediatric burns (n=77)</td>
<td>Total charges and direct costs were significantly lower for AQUACEL® Ag Dressing</td>
</tr>
<tr>
<td>Jurczak F, Dugré T, Johnstone A, et al. Int Wound J 2007; 4(1): 66–76</td>
<td>Randomised clinical trial of Hydrofiber® dressing with silver versus povidone-iodine gauze in the management of open surgical and traumatic wounds</td>
<td>Prospective, randomised, open label, controlled Phase III</td>
<td>Open surgical and traumatic wounds (n=67)</td>
<td>At final evaluation, AQUACEL® Ag Dressing was significantly better than povidone-iodine gauze for: overall ability to manage pain, wound trauma on dressing removal</td>
</tr>
<tr>
<td>Clarke JV, Deakin AH, Dillon JM, et al. J Wound Care 2009; 18(1): 5–11</td>
<td>A prospective clinical audit of a new dressing design for lower limb arthroplasty wounds</td>
<td>Clinical audit</td>
<td>Lower limb arthroplasty wounds (n=223)</td>
<td>Wounds managed with the new dressing had: lower blister rate, fewer surgical site infections</td>
</tr>
</tbody>
</table>

**Economics**

Wound care is a large cost burden for healthcare systems and wounds have a significant negative impact on patients and wounds have a significant negative impact on patients and wounds have a significant negative impact on patients. A review of several wound care audits has highlighted lack of appropriate diagnosis and wound management as a key driver of delayed healing. Initiatives focused on improving the diagnosis and treatments of wounds are likely to significantly reduce costs.

AQUACEL® Ag Dressing reduced average healing time compared to a calcium alginate dressing in a study of patients with diabetic foot ulcers.
In a randomised comparison of AQUACEL® Ag Dressing with silver sulfadiazine in the management of patients with partial thickness burns, AQUACEL® Ag Dressing was associated with less pain and anxiety at dressing change, fewer dressing changes, less nursing time and fewer procedural medications.

In addition, a study comparing length of hospital stay in paediatric burns patients treated with AQUACEL® Ag Dressing or silver sulfadiazine found that wounds managed with AQUACEL® Ag had significantly lower total and direct hospital costs per patient.

References


Author details

Queen D, Walker M, Parsons D, Rondas A.

1. Honorary Research Fellow, Department of Dermatology and Wound Healing, Cardiff University, Cardiff, UK.

2. Senior Research Advisor, ConvaTec Global Development Centre, Deeisce, UK.

3. Associate Director, ConvaTec Global Development Centre, Deeisce, UK.

4. Physician for the Elderly, MSc in Wound Healing and Tissue Repair (Cardiff, Wales), and PhD student at the University of Maastricht (CAPHRI), working for The Zorggroep, Venlo, The Netherlands.